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and

University of Maryland, College Park, Maryland 20742

Abetract

A study is made of a model for the beanrbeam interaction in ISABELLE using

numerical methods and the recently developed method of Transfer Maps. It is

found that analytical transfer map calculations account qualitatively for all

the features of the model observed numerically, and show promise of giting

quantitative agreement as well. They may also provide a kind of “magnifying

glass” for examining nwnerical results in fine detail to ascertain the

presence of small scale stochastic motion that might lead to eventual

particle loss. Preliminary evidence is presented to the effect that within

the model employed, the beam-beam interaction at its contemplated strengths

shauld not lead to particle loss in ISABELLE.
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1. Introduction

The purpose of

Peierls(i) for the

recently developed

this paper is to explore t-hemodel of Rerrera, Month, and——

ISABELLE beam-beam interaction with the aid of the
(2)metlmd of Tranefer Maps and its associated Lie

(3)
algebraic techniques. The model empleyed for the beam-beam interaction

(1,4)
i~ “weak-strong”: One beam, the etrong beam, is taken to be fixed, and

the other be=, the weak beam, ie tzeated as a C“.‘.ectionof particles that

are affected by their passage through the strong beam but not by each other.

The etrong beam ia assused to be an mbunched ribbon in the horizontal plane

whose vertical charge distribution is wall described by a Gaussian shape. The

weak beam also lies in the same horizontal plane and crosses the strong beam

at a fixed angle. Only vertical deflections of the weak beam by the strong

beam are taken into account.

In the strong beam-weak beam limit, the net ❑otion of a particle in the

weak besm can be viewed ae the continual repetition of two sequential

motions: passage through the storage ring followed by passage through the

strong be-. See Fig. 1. The equations of motion for each of these two

passages (through the ring and through the strong beam) are derivable from

Hamiltonians, and therefore each passage is described by a symplectic (Poisson

bracket preserving) transfer map.(2,3)

By design, the passage through a etorage ring is well described by a

linear ❑ap. Upon restricting attention only to vertical motion and ❑aking a

suitable choice of coordinates, the “ring” transfer ❑ap can be written as

q’ - q cos(2Hw) + p sin(21rw) (1)

P’ = - q ein(211w)+ p cos(21Tw).

Here q is proportional to the vertical coordinate of a particle in the weak

beam, p is a suitably chosen canonically conjugate mcnnentun,and w modulo an

integer ie the tae of the storage ring.(1) The unprimed vari~ablesq,p

specify the particle orbit just as it enters the ring, and the primed

variables q’,p’ describe the orbit upon exit.
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The effect of passage through the strong beam is more canplicated. To

find the “beam” transfer map exactly, it is necessary to integrate th

nonlinear equations of motion for a particle passing through the strong be-.

Hwever, a good approximation to this map is given by assuning that the

Farticle suffers a vertical mcxmenttmchange depending only upon its initial

vertical position, and that the vertical position itself remains aaffected:

q“ - q’ (2)

P“ = p’ +U(q’) ,

This im~l se approximateon becomes exact in the 1imit that the interaction

region bectmes a point and/or the transit time through the region approaches

zero. In any case, the beam mapping (2) is symplectic, and therefore its use

will produce m qualitative error.

The function u is proportional to the electrostatic force exerted by the

strong beam. In the coordinates and Gauseian model employed, u is given by

the relation(l)

q43 2
u(q) = 4TrD/#3 j dt e-t .

0
(3)

Here D is the beam-beam strength parameter that typically(4) has values
-3 -2

ranging from 10 to 10 . It is normalized in such a way that th~

beam-beam interaction depresses the tune for infinitesimal betatron

oscillations by an momt D when D is small.

There is one last caveaL to be ma&. According to the current design,

ISABELLE will actually have 6 collision regions separated by 6 identical

lattice sections. Thus, in reality, the maps 1 and 2 ❑ust be iterated 6 times

to simulate tb effect of one complete turn. Correspondingly, equation (1) is

the transfer map for one lattice section aqd K modulo an int~.ger is actually

1/6 of the total ❑achine ttme.



-.

●

-4-

In this paper t~ effect of repeated iteration of the maps (1) and (2) are

studied using Transfer Map ❑ ethods and reeults are caupared with nunerical

calculations.

2. Tranefer Map Resulta

To treat q and p on an equal footing, it is rotationally convenient to

introduce variables z and z by the relations
1 2

‘1-q (4)

‘2=p”

Employing this notation, let f(z) be any ftmction of the Phasespace variablee

z. With each such function f there is an

operator acts on functions and is defined

F8 = [f,81 “

Here g is any fmction of tlw phase-space

[s1

the

denotes tti Poisson bracket operation

associated Lie operator F. This

by the rule

(5)

variables, and the square bracket

familiar frm classical mechanics .

Next, consider the object exp(F), called a Lie transformation, defined by

exponential eeriee

exp(F) = I+ F+ F2/2f +?/3! + . . . . (6)
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More explicitly, the action of exp(F) on an arbitrary function g is given by

the expression

exp(F)g _ g + [f,g] + [f,[f,g]]/2! + ....

Nou consi&r the operator exp(F2) where F2 is the Lie operator

associated with tlwsquadratic polynomial

f2 = - 11’w(z;+ ~:) ,

(7)

(8)

It is easily verified that

‘2 ‘1 0 [f2, z11 - 2TIWZ2

(9)

‘2 ‘2 - [f2,z2J -- 21rwzl .

Consequently, use of (7) and (9) gives the relation

exp(F2) 21 - =1 + Z2(21TW) - z1(2Tw)2/21

- z@rw)3/31 + . . .

= z, cos(-) + z. sin(2mw) .

Similarly, it can be checked that

exp(F2) Z2 = - Z1 sin(tiw) + 22 COS(21W) .

(lOa)

(lOb)



Therefore the ring transfer map (1) cm be written in the ccaupactform

A oimilar Lie transformation representation ca be found for ttm barn

transfer map (2). Let fb(z) be th fmction &fined by tb relation

fb(Z) = J
‘1

u(q) dq .

Tlw Poioson bracket relations unaloppua to (9) are

‘b ‘1
- [fb, Zl] = o

‘b ‘2 = [fb, ’21 - afb/asl - U(zl)

2
‘b ‘2 = [fb, [fb, Z211 - [fb, U(zl)l -0, ●tc.

(12)

(13)

Consequently the infinitr sun (7) ia trivial to evaluate in this came becauze

it terminates. One finds t~ result

exp(Fb) Z1 - El

exp(Fb) S2 = X2+ U(Z1) .

Tlwrefore the beam tranufer map (2) can k written in the form

881 = exp(~b) 2’ .

(14)

(15)



.

-7-

Caubining tb two results (11) and (1S), one finds that the net transfer

map !~for passage through the ring folluued by passage through the strong be=

is giveu by tti product

M - exp(F2) exp(Fb) . (16)

The observant reader may be worried about the order in which the two factors

appear in (16). It can be verified that the above order indeed is correct

because Lie transformation have the property

ew(F2) g(z) = g exp(F2) z =’g(z’) (17)

for any fmction g(z).(3)

The problem at hand is to evaluate !{nfor large n in order to compute

the effect of many passages through the ring and the strong bcm. The

computation of M“ would be easy if a Lie operator H could be found such that

M could be re-expressed in the form exp(H), for tka tinwot~ldbe simply

given by exp(nE). The determination of such an H is a standard problem in the

theory of Lie algebras that is solved oy using tb C~pbell-3aker-Haus dorff

formula.(’) This formula gives R in terms O: F2 and Fb, and their

mul tiple comutatora. In addition, there is an analogous formula that gives

the function h associated with H in terms of f2 and fb, and their mu.1tiple

Poisson brackets. It also can be shown that the canputation of exp(nH) is

equivalent to the integration of a “trajector~’ in “z space” for n units of

“time” using -h as an “effective” Hamiltonian. Comequently, the function

h(z) is formally invariant tinderthe map. This means that the fmction h(z)

generalizes the Courant-Snyder invariant to the case of nonlinear motion.
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For the problem under consideration, h is given by the fomal operator

formula,

h= f2+F
2

[1 - exp(-F2)]-1 fb + .... (18)

The terms not shown in the series involw Poisam bruckets with more then one

‘b‘
and therefore are quadratic end hi~er order in t- beam-beam strength

par~eter. Consequently, as it stands, eqwtion (18) is correct through first

order in t~ beam-beam strength.

The computaticm of the effect of the

such as occur in (18), is facilitated by

coordimtes in phase space and

achieved in a canonical way by

the relatious

1!2
q = 21 = (2a) sin $

z = (2a)
1/2

P =% Cos $ .

operator F2 and functions of F 2’
the introduction oi “polap’

the use of Fourier

using action angle

series. This mn be

variables a, $ defined by

It is evi&nt frm (5) and (8) that F2 annihilates any function of a.

By contrast, use of (l), (11), and (17) shows that

n/2
exp(F2) a exp(in$) = exp(i2n7rw)a

n/2
exp(in$) .

(19)

(20)
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Ca,wequently, the fmctions exp(in$) are ei~nfmctiona of F2 with

eigenvalues i2nmw:

F2 exp(in$) = i2nnw exp(in$) . (21)

This result C= also be obtained by direct evaluation of the Poisson bracket

[f2, exp(in$)].

Th determination of h as given in (18) is now atrai@tforward. Imerting

(19) into (12) and making a Fourier expansion, one finds

m

‘b = z
en(a) exp(i2n$)

where

11

c I=411Da
n JJ

du dv v cxp(-3au2v2)

00

(22)

[23)

x [In(3a12v2) - In’(3au2v2)] .

Here the symbols In denote ❑odified ~ssel f~ctions , and we &S hen made

(5)
of the standa;d relations

exp(x cos y) = 2 In(x) exp(iny)
-w

I +1 =21’.n+1 n-1 n

(24a)

(24b)
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Nou insert (22) into (18) and we the eigenfunction property (21). The reeult

is that h is given in caplex form by the expreceion,

m

h-- 21rwa +
2

cn(a)[2nnw/sin(2mw)]exp[2in($ + 7rw)], (25a)

and in real form by the expression,

m

h= - 27Twa+ co(a) + 2 2 cn(a)[2nmw/sin( 2n7m)]cos[2n( $ + m)] . (25b)

1

The expreseions (25) provide a generalization of the Courant-Snyder

invarirmt ~“nroughfirst order in the beam-beam interaction strength. Upon

inspecting them, eeveral pointe are iusnediatelyevident:

(a)

tune w is

Resonance occur and the formulas diver~ whenever the

of the form

(26)

where k end N are integere. Thw there are resonances at

half-integer tmes , quarter-integer trees, eixth-integer trees,

etc. This was to be expected because u(q) as given b~ (3)

contains no even powers and all odd powers of q.
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(b) The strengths of the varirms order resonmcee are
(5)proportional to ncn(a). Using the large n expansion,

In(x) - exp [- n log(2n/ex)l , (27)

one finds from (23) that tb- strengths of th various resonances fall off

faster than exponentially as n is increased. Therefore the sizes of

various resonance features in phase space should decrease rapidly with the

order of tk resonsnce. Moreover, these features almuld decrease in size

according to their proximity to the origin in phase space.

It also follms that (25) converges rapidly at all tcme values for

which w hi badly appr~ximated by rationals. Indeed, the points in tune

space where (25) fails to converge are of measure zero.(6)

(c) With the aid of time revemal invariance it can be shown frau

(16) tbc the locations of various features in phase space such as fixed

points and separatrices must be syurnetricabout the line f#I= lT/2- llwfor

ali hem-beam interaction strengths. (Note that according to (19), the

li~ @ = O corresponds to the p axis.) Because fb as given by (12) is

even iri.Zl, there is also symmetry in phase space with reopect to

inversion through the origin. Examination of (25) shows that both of

these symmetries are present in h.
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TO cd cul ●te the behavior of M exactly at and nea reaonenm, it ia

necessary to work with powers of M. For example, conddar m’th order

resonances. Then ❑ = 2N and tunes near an m’th order reaonan= val= cm be

written in tb form

where 6 mess urea &part ure fran

that there is ● Lie operator H=

(28)

exact remmnce. Moreover, it can be shwn

swh that ~ can be written in the

●xponenti al form exp(mlir)at md near resonance without diwr~nce

difficulties Fine]ly, thre is again m effective Emil tonien h=

correapnding to Hr that i. giwm in this case ~ tlw fomula

{
hr - (6/w)f2 + (6/w)F2 1 - exp[-m(6/w)F2] “

)

{ }
x 1 + exp[-F2] + exp[-2F21 + . . . + exp[-(m-l)F2] fb + . . . .

Upon inserting (22) into (29), one finds

s

hr- 22r6a + co(a) + 2 cn(a)[2nWd/ain(2n~)lcoa [2n(0 + nw)l.

1

(29)

(90)

It is evi&nt that tlw expression for hr j.s well behaved near by and exactly

●t the ral~onerm val IS d - 0.
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As a specific exmnple, consider the case of fourth order ~-esonancea. Near

a one-quarter ttme k = 1, N w 2, and

Thus one finds for mnall 6 that

(32)2nm6/sin 2nlrw= 2nm5/sin(nm/2 + 2nn6)

= 0(6) for n odd

ml(-1)n/2 2
+ 0(6 ) for n even.

Consequently, neglecting terms of order 6D and 62, one haISin this case for

h= the expression

hrm - 2m5a + co(a) + 2 I (-l)n’2 en(a) cos[2n( $ + w)] .
n even

(33)
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Because -hr acts as an effectiw Hmniltonian, the fixed points of M4

a’:ethe equilibrium points of hr. These points are therefore thu solutions

to the equations

O ‘~hr/aa - - 2m6 + Co’(a) - 2c2’(a) cos 4(0 + nw) + ...

0 = ~hr/~$ = 8c2(a) sin 4($ + nw)

- 16c4(a) sin 8($ + mw) + ....

(34a)

(34b)

The solutions to (34b) are readily found to be

When these solutiom ara inserted into the “radial” equation (34a), it takes

the simple form

ou - 2H6 + co’(a) : 2c2’(a) + 2c4’(a) + .... (J5b)

Thus, as expected,

a quarter.

there are 8 fourth-order fixed po~nts when the tune is near
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Tk nature of these fixed points can be obtained by expanding h= about

then. At the fixed points one f ids the results

a2hr/aa2 = co’’(a)~ 2c2’’(a)+ 2c4’’(a)... (36)

a%r/a2a4 = o

a2hr/a~2 = +3*c2(a) - 128 c4(a) + . . . .

It follow that if the equations (36) are dominated by their first terms, then

the fixed points are alternately elliptic and hyperbolic (stable and
(7)

unstable), as also expected, because the quadratic term cozrespnding to

(36) is either definite or mixed.

Note, rcoreowr, that equations (36) and all the hi@er order terms in the

Taylor series expansion about a fixed point are linear in the be-beam

interaction strength. Consequent;’, for small beam-beam interaction strength,

the size and shape of resonant islands and their associated separatrix

structure are independent of the beam-beam interaction strength, and are

&pendent only on their location in phase space. Only the width of the

resonance in ttme apace, i.e.D the rate at which various features move as 6 is

changed, depends on the interaction strength. This latter dependence can be

inferred from (34a) and (35b).

3. Nunerical Results

A proper stdy of tha usefulness of h and hr involves the ntmerical

incegration of the trajectories that they generate, or at least a determina-

tion of their level lines, and a comparison of these results with points gen-

erated by iterating M and Mm nwnerically. Such a comparison has been made

in a similar but simpler problem ir~volving-the insertion of a short sextupole
(2)element into a ring. In that caae the quantitetiva agreement proved to

be excellent, and similar agrement is expected for this problem as well.
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Ihwever, because of the complexity of evaluating the coefficients en(a),

the equivalent sttu.lyhas not yet been carried out for the

Instead, a preliminary exploration of the nature of M has

studying the points obtained by iterating Idnumerically.

will be shown that hi indeed does have all the qualitative

predicted in the previous section.

present problem.

been made by

In this section it

properties that were

Figures 2 through 5 elmw @ase-space plots generated by successive

itcrates of M for various initial conditione and twe valuee. The phase-space

coordinates range over (-2, 2)S and the scale is chosen SG that the beam lies

within (-1, 1).‘1) The ctmee are near the resonant ml-s 1/2, 1/4, 1/6,
-2

and 1/8 respectively, and the beam-beam interaction strength is 10 .

Observe that the size of resonance features, e .g., island dimensions, indeed

do decrease with increasing order of the resonance. Symmetry about the 1ine

$- ll/2- mw and inversion symmetry are evident. The nunber and nature of

fixed points is as anticipated.

Figure 6, which appears to he almost identical to Fig. 3, was obtained by

running at a tune w = O.253 and a be~beam interaction strength of

5 x 10-3. It shows, as predicted, that the size of resonant features is

independent of the size of the interaction strength protided the tune is

suitably adjusted mo as to ❑ake the features appear in the same region of

phase space. Note that according to (35b), when the size of the Cn is

halved, 6 should also be halved to keep the radial location of fixed points

the sine. Examination of the tune valms for Figs. 3 and 6 shows that this is

indeed the case. When the tune is thus adjusted, there is a slight change in

the angular location of the fixed points in accord with (35a).

Figure 7 shows a tenth-order resonance obtained by running near a tune of

1/10. It was not shown as part of the sequence of Figs. 2 through 5 because

the island structure becanea too mnall to see when (by adjusting the tune) it

is located closer to the origin. This example verifies that the sizes of

resonant features decrease with proximity ~o the ori~n, and in fact the

hi~er the order of the resonance, the mozc rapid ia the decrease.
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Figure 8 shows the result of running with a nonresonant tune of 77/100.

On the scale shown and for the number of iterations made, there seems to be no

evidence that any points will leave the beam envelope. The nature of the map

and any tendency for points to move off what appear to be invariant curves

could be examined in finer detail by studying the value of h(z) at each

point. Because h generalizes the Courant-Snyder invariant, its variations

could be used as a kind of %agnifying glass” to give evidence for small scale

homoclinic or stochastic behavior that is not otherwise discernible to the

naked eye and that might lead to eventual particle lose. This method has been

used to atmw that particle motion in the Van Allen radiation belts is not
(8) -

integrable.

Figure 9 illustrates

beanrbeam problem if the

(taking into account ita

that stochastic behavior indeed can occur for the

interaction strength is large enough and the tune

depression by the beam-beam interaction) is

sufficiently close to a resonant value. The stochastic behatior in this case

leads to particle losses within a few hundred turns.

4. Concluding Remarks and Comments

Operation O: ISABELLE with each 1/6 lattice section tiving a tune near a

multiple of 1/2, 1/4, 1/6, or 1/8 corresponds to operating the total ring near

an .’.nteger,half integer, or quarter integer tree. Because operation of the

total ring near any of these tunes is probably already precluded by structure

resonances in the ring, the first beam-beam interaction resonance of

significance is at least of tenth order. Figure 7 illustrates that the

tenth-order resonance structure is small even when it is far from the

phase-space origin, and consequently it ia even smaller when it is withiG the

beam. This observntion$ and the regular behavior found in the nonresonant

case of Fig. 8, give preliminary evidence that within the model employedJ the

beam-beam interaction at its contemplated strengths should noc lead to

particle loss. However, in accord with our earlier ccnmnent,it would be

worthwhile to examine the behavior of h(z) and hr(z) for evidence of small

ecale stochastic behavior.
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The conclusion that resonances helm tenth order are not significant

depends on the aaounption that all 6 interaction regions and all 6 lattice

periods are identical. Th validity of this assumption should be examined,

and the effect of lower order reeonancee akuld be re-examined when the 6

interaction regions are all slightly clifferent.

Fimlly, conei&ration ebuld be given to the possible effect of adding

nonlinear ties to the transfer map for the fing. It is anticipated that tlw

addition of suitable nonlinearitiee, perhaps by tlw use of octupolae, would

lead to a reduction in the size of be-beam interaction resonance

struct~es. In particular, it would then no longer be the case that the size

of resonant structures would depend only on their location in phase space and

not on the interaction strength. It mi@t turn out, of course, that the ring

nonlinear ties required to achieve a significant effect would be difficult to

obtain or would be tmdssirable for other reasons.
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9.

Figure Captions

Schematic representation of particle motion in a storage ring and a
colliding beam region.

Phas-spaca plot generated by succesive iterations of the transfer map
Mfor various initial conditiom. The tune is near one half. The
coordinates extend frcnn- 2 to 2, and are nomalized in such a way that
the bemn will be within tk unit circle under actual operating conditions.
TIM beam--beaminteraction strength is 10-2.

Phasrspace plot when the tune is near one fourth.

phas~spece plot when ths tme is near one sixth.

Phas~space plot when the tune is near one eighth.

Phas-space plot when the interaction strength is half that of Fig. 3. The
initial p,q values are the sane as in Fig. 3, and the tune is adjusted to
make various phas-space features match those in Fig. 3.

Phase-space plot near a tune of one ten~h.

Phase-space plot for a nonresonant tme.

Phase-space plot shewing stochastic behatior for 1ergs beam-bean
interaction strength. The reader is invited to draw the symmetry
line $ = ‘Ir/2- m.
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Fig. 5
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Fig. 9
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